Enrollment No:	Exam Seat No:
----------------	---------------

C.U.SHAH UNIVERSITY

Summer Examination-2017

Subject Name: Digital Circuits

Subject Code: 4TE03DCI1 Branch: B.Tech(Electrical)

Semester: 3 Date: 27/03/2017 Time: 10:30 To 01:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the follow	ing anestions:			(14)	
Q-1	a	Attempt the following questions: Digital number system is said to be of base or radix				(17)	
	-	(a)10	(b)2	(c) 0			
	b						
		(a) Two bits	(b) Three bits	(c) Four bits	(d) Five bits		
	c	Code not included in code conversion standard is					
		(a) BCD code	(b) gray code	(c) excess3 code	(d) truth table		
	d						
		(a) AND	(b) XOR	(c) NAND	(d) NOR		
	e						
		(a)4 bit binary	(b) 3 bit binary	(c) 2 bit binary	(d) 1 bit binary		
	f	f Code conversion circuits mostly uses					
		(a)AND-OR gates	(b)AND gates	(c)OR gates	(d)XOR gates		
	g	A two valued Boolean algebra is defined as a set of					
		(a) three values	(b) two values	(c) four values	(d) five values		
	h	TTL digital logic family uses					
		(a) unipolar		(b) bipolar			
	i	(x*y)*z=x*(y*z) is	the				
		(a)commutative	(b)inverse property	(c)identity element	(d)associative		
		property			property		
	j	Gray code representation of 14 is					
		(a)1010		(b)1100	(c) 1001		
	k	Most significant bit of arithmetic addition is called					
		(a) overflow	(b) carry	(c) output	(d) zero bit		
	l	Two bit subtraction is done by					
		(a) demux	(b) mux	(c) full subtract	(d) half subtract		

Attempt any four questions from Q-2 to Q-8 Q-2 **Attempt all questions** (14)**A** Draw the logic symbol and construct the truth table for all logic gates. Design and Implement a Half Adder Attempt all questions Q-3 **(14)** Implement All basic gates using NAND and NOR logic. (i) Convert (105.15)₁₀ number into binary number. (ii) Convert (4057.06)₈ into decimal number. (iii) Convert (10101)₂ number into decimal number. (iv) Convert (4BAC) 16 into binary. (v) Convert (756.603)₈ into hex number. (vi) Convert binary 1001 to gray code (vii) Find 2's compliment of -45 in 8-bit form. Attempt all questions **(14) Q-4 A** (i) Implement the Boolean Expression in AOI logic. Y = A + BC' + (B + C)' + B'C'(ii)Reduce the Expression (B+BC) (B+B'C) (B+D) Obtain the minimal SOP expression for $\sum m(0,1,4,5,6,7,9,11,15) + d(10,14)$ And implement it in AIO logic Attempt all questions Q-5 (14)Design and Implement a 4-bit Binary to Grey code converter. Design and Implement a 3-line to 8-line decoder. **Q-6** Attempt all questions **(14)** With neat sketch explain the operation of Edge Triggered J-K flip flop. A **B** Design and Implement a 1-line to 8-line demultiplexer. Q-7 Attempt all questions (14)With neat diagram explain the operation of 4- bit parallel- in Serial-out Shift register. A **B** Comparison of Counters and Registers. **Q-8 Attempt all questions** (14)Design and implement a synchronous 3-bit up counter using j-k flip flops.

(c) AND

(b) odd function

(d) both a and b

Basic building block digital circuit is/are

What are the applications of shift register?

(b) NOR

(a) NAND

n

Exclusive-OR is an

(a) even function

